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AbArIct-A novel theory is presented for the growth of cracks in ductile materials. The theory predicts the
steady state crack tip extension velocity as it depends on the remote loading, geometry. and material
parameters. The theory is based on (a) a kinetic law for the crack tip velocity II as it depends on the stress
state at the crack tip and (b) a realistic real time flow rate law for tbe material non-elastic deformation.

It is shown that with a rate flow law and for a finite crack tip velocity, no matter how small, the crack tip
stress field is characterized by a ,-1/2 singularity. This is contrary to the case for a strictly stationary crack.
Because of this stress behavior, the Irwin crack extension force is lIPin available as a driving force in the
crack tip kinetic law noted above.

The theory predicts a broad range of crack extension phenomena such as are commonly observed.
Steady state threshhold values and "critical" values for apparent stress intensity factors arise in the theory
from stability limits of the predicted steady state curves.

I. INTRODUCTION
The subject of this paper is an entirely novel theory for the growth of cracks in ductile
materials. Specifically, it is a theory for the steady state crack tip extension velocity v as it
depends on the remote loading of the body, the crack geometry, and certain material properties
of the body.

The principal novel feature of the theory is the use of the mechanical analysis of crack
equilibrium due to Griffith [1] and Irwin[2]. In particular the Irwin crack extension force '6 plays
a central role comparable to its significance in brittle fracture. We shall show that the
Griffith-Irwin theory can be consistently extended into the non-equilibrium regime if the crack
extension process and the plastic flow process are both treated as real time rate processes. We
note that we are not concerned here with dynamical or inertial effects at aU but rather with
kinetic rate laws and dissipative phenomena.

The importance of the Irwin analysis[2] was that he showed that a reversible crack
extension force was determined entirely by the local stress state at the crack tip. He
characterized that stress state by the stress intensity factor K that measured the strength of the
r- l12 stress singularity at the crack tip. It was shown by Barenblatt[3] that even in an atomistic
cohesive model the continuum singularity characterization was still applicable to determine the
force ~ The importance of this is the local nature of the crack extension force. In the present
paper we shall show how the local stress intensity factor K can be distinguished from the
apparent stress intensity factor KA that would be deduced from the remote loading and the
crack geometry under the assumption of linear elastic behavior alone. The distinction will arise
from the stress changes in the cracked body due to the plastic deformation of the actual
material of the body.

At this point it might be questioned whether, for ductile materials, the r- l12 sinaularity
characteristic of the elastic stress field is even present. It is well known that for power law
hardening materials (as well as for power law non-Newtonian viscosity) the index of the
singularity changes, as shown by Hutchinson [4] and Rice and Rosengren[S}. The calculation of
the present paper will show that, for realistic, rate-dependent flow laws, the r- l12 stress
singularity is preserved for crack tips that are moving at some velocity v no matter how small v
is. The solution for the moving crack is, in fact, non-analytic in v at v = O. Thus the static crack
problem is actually a singular problem.

For simplicity, the theory will be presented for a semi-infinite crack configuration and for
the case of anti-plane strain known as Mode III. In this paper we shall omit the customary
subscript III on the symbols '6 and K.

Althouab we present the theory for the case of the sharp crack in Mode III, it is expected
that the principal conclusions will be applicable also for more complex structures.
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~. PHYSICAL BACKGROUND FOR THE THEORY

In addition to the laws of mechanics there are two essential ingredients of the theory that
relate to assumed or measurable material constitutive properties. These are (a) a kinetic law for
the crack extension rate v as a function of the local value of f§ and (b) a constitutive law for the
non-elastic strain rate i. as a function of the local stress deviator 0'. Since neither of these has
wide currency in the form we shall employ, we shall now discuss them.

(a) Crack propagation kinetics
The theory of crack equilibrium of Griffith[1] for brittle solids was modified by Irwin{2] in a

way that made explicit the local nature of the equilibrium at the crack tip. Irwin showed that a
generalized force, the crack extension force '6, could be defined in terms of the local stress state
at the crack tip and that the equilibrium could be expressed as the equality between '6 and the
reversible work of crack extension per unit distance f§o that can be expressed in terms of the
free energy of the new surface generated by cracking. Thus, the crack is in equilibrium with the
applied forces when

(I)

The Griffith-Irwin theory is a theory of equilibrium for quasi-static crack tip displacements and
it says nothing about crack propagation at finite velocities.

The problem of finite velocities is completely analogous to that of other kinetic phenomena
that are common in materials science. In our case, any finite value of v results in some rate of
energy dissipation over the reversible work rate and so C§ must exceed C§o by such an amount
that the mean dissipation rate ~ satisfies the relation

~ = ('6 - f§o)v. (2)

This dissipation rate should not be confused with any dissipation due to non-elastic defor
mation. The cracking process and the plastic flow process are not statistically correlated
phenomena. They interact only through the field equations that govern the stress equilibrium.

The dissipation with which we are concerned here arises from the atomic energy barriers
between successive local equilibrium, positions of tbe crack. Sucb barriers to propagation of
defect configurations are common in problems involving the lattic mechanics of singular lattice
structures and reflect the translation periodicity of the lattice. The crack motion problem is
entirely analogous to the well known problem for crystal dislocations as first described by
Peierls [6]. The phenomenon for crystal cracks was first discussed explicitly by Thomson et
al. [7]. It was in fact already implicit in the Barenblatt theory[3], further discussed by Barenblatt
et al.[8], and also in the work of Gehlen and Kanninen[9] on computer simulation of crystal
cracks. The first attempt at deduction of a kinetic law for v is that of Hsieh and Thomson [to].

The subject has been treated in detail by Lawn and Wilshaw [1 J] in a book that details the
kinetic problem. Lawn[l2) has further described a derivation of a kinetic law for the crack tip
velocity analogous to that which has been deduced for crystal dislocations.

The main purport of this current work is that there must exist a kinetic law for the velocity
of a crack tip as it depends on '6, Wo and tbe temperature T, based on thermal activation. Thus
we may write generally

v =v(f§, f§o; T). (3)

We emphasize again that, for the theory presented here, the f§ that appears in eqn (3) is that
which is determined by the stress intensity factor K that characterizes the local stress
singularity at the crack tip regardless of the nature of the stress field elsewhere in the body. If
the body is strictly elastic, that K will be the same as KA determined from the applied loads,
but, if non-elastic deformation has resulted in self-stress in the body, K is not the same as KA•

We shall choose an explicit form for the kinetic function of eqn (3) below for the purpose of
explicit calculation.
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(b) Constitutive law for non-elastic flow
We stated above that we were concerned with "realistic, rate-dependent flows laws". What

is meant by that characterization is constitutive relations for non-elastic deformation that more
or less accurately reflect the behavior of metals according to modern testing experience. The
principal features of modern constitutive relations are that the non-elastic strain rate is uniquely
determined at any time by the current value of the stress deviator u and by the current values
of one or more internal state variables that account for the prior deformation history through
incremental evolution laws. An example of such a theory is that due to Hart[l3].

We shall in the present paper avoid complications that might arise from using constitutive
relations that are too complex. Fortunately, tbe principal form of the solution of our problem
seems to depend only slightly on the details of the constitutive relations. We sball, therefore,
require only the simplest general structure for them.

We require specifically that the non-elastic strain rate f and the stress deviator CT be related
through a simple isotropic relation of the form

E::: (i/O')u, (4)

where the light faced symbols stand for the simple second invariants of their respective tensors
of tbe form

(5)

and wbere the summation convention is implied for repeated indices. A similar equation holds
for 0'.

Now the remainder of tbe constitutive equations consists of scalar relations

i ::: i(0', 0'*),

where 0'* is a single hardness state variable satisfying the evolution law

u* ::: iF(O', 0'*).

(6)

(7)

The functions f(O', 0'*) and F(O', 0'*) must be specified. The relationships, eqns (4)-(7), are rather
a simplification from the complete relations described in Ref. [13]. They nevertheless are fairly
effective, especially when specialized to use for moderate and low temperature behavior for
metals. In our present treatment we shall actually ignore the strain hardening given by eqn (7)
and restrict our attention to the strain rate behavior at constant 0'*. This makes our material
effectively a non-Newtonian viscous body. The strain hardening, which really modifies the
results rather slightly, will be the subject for a later paper.

We propose tben to use in our calculation, any of many possible forms for the function
f(O',O'*). We shall see tbat the calculation is rather model independent and the only effect of
specific models is numerical. We shall further restrict our constitutive function E by the
moderate requirement that it have the form

E= f*(O'*)q,.(u/u*).

So long as 0'* is constant, this is actually no restriction.

(8)

3. MECHANICAL BASIS FOR THE THEORY

We shall calculate, in the next section, a boundary value problem involving non-linear
non-elastic flow. Because of the determinative form of the flow law, it is convenient to
formulate and solve this problem by use of the continuum dislocation theory of self-stress.
Such a method for solving plasticity problems was first proposed by Mura[141, but there does
not seem to have been any subsequent application of the method. We shall, therefore, briefly
describe the basis for this method of solution in this section.
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The method is based on the theory for incompatible non-elastic strain. The relationship
between incompatibility and continuum dislocation was given a definitive form by Kroner[15].

Because of the non-linear character of the non-elastic flow law. the non-elastic strain rate in
response to the crack stress field is not a compatible strain rate field. Therefore. at each point in
the body there is a time rate of accumulation of continuum dislocation density. This ac
cumulation rate can be computed in terms of the spatial derivatives of E. The accumulation rate
results in a time rate of generation of self-stress in the body. At any time the total stress in the
body is uniquely determined by the applied loads. the current dislocation density distribution
and the boundary conditions imposed by the presence of the crack. Let us now examine a bit
more closely how this comes about.

(a) The dislocation density tensor
Consider first the description of the state of strain of an elastic body that can also sustain

plastic strains. Let ut be the displacement field corresponding to the sum of elastic and plastic
strains and let /3fj • /3ff and /3F; be respectively the total. elastic and plastic distortion tensors.
Then by definition of these quantities

ufJ =/3r. (9)

=/3ff+/3F;. (10)

where

u~ ;;;; aut!aXj' (II)

In general. the quantities /3ff and /3G are not separately expressible as gradients of components
of ut. Because of eqn (9). the total distortion satisfies the condition that its integral about any
closed path C bounding some surface S equals zero. Thus

then for the two terms in eqn (10)

o=Ie dXjl3 ff +Ie dXJ/3G•

=-Lds;ejkJ/3f,.k - Lds;eJ/dI3'.k.

(12)

(13)

(14)

where we have employed Stokes theorem and ejkl is the completely anti-symmetric 3-index
symbol and dsj • is an oriented element of S. We define the dislocation density tensor. following
Kroner{151. as

(15)

Since eqn (14) is satisfied for arbitrary S. it follows then that

(16)

and the dislocation density associated with the plastic field is reflected also by the elastic field
and so a characteristic state of stress results.

There is an extensive literature on the relationship of the stress states resulting from such
dislocation distribution and the associated incompatibility. Good reviews of the subject have
been published by Mura{l6} and deWit[17]. We shall not discuss bere the general methods that
are available but rather shall specialize our problem immediately to the two-dimensional
anti-plane strain case.
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For this case all displacements are in the direction normal to the plane. We shall take the
coordinates in the plane to be XI and X2 (or X and y) and the normal direction to be X3 (or z).

The only components of ~ii that remain are ~3i and j =1,2. Now the only non-zero component
of aii is

(17)

We shall write this in two-dimensional vector form and suppress the index 3. Thus

(18)

where

(19)

and XI and X2 are unit basis vectors. Since there is no distinction in this geometry between the
distortion pP and the symmetric plastic strain E (other than a possible factor of 2) we shall
replace pP from here on by E and so we shall have

or for time rates

a =-Vx E,

a=-VXi.

(20)

(21)

(b) The associated self stress
The stress at r in an infinite uniform (uncracked) body that is generated by a(r') is readily

computed from the stress function

x=(0/21T) In R(r, r')

where

R=lr-r'l·

The stress vector (1' is defined as

or for simplicity (and alternatively)

=O'..x+O'yy.

For our case the result is

(I'/,(r) == -(a/ay)(0/21T)fds(r')a(r')ln R(r. r'),

ut(r) =(a/ax)(0121T) fds(r')a(r')ln R(r, r').

where G is the modulus of rigidity and the integral is extended over the entire body.
If we consider the x, y-plane as the complex z-plane. where

z=x+iy,

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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we can recast eqns (27) and (28) in a compact complex form as follows:
Let the complex stress function UO be given by

Then eqns (27) and (28) are simply represented by

-0 a fd I (') Iu =-2' s a z --,.m z-z

(30)

(31)

As noted above, the kernel of the integral of eqn (31) is that for the uncracked body. For the
problem to be pursued below it is important to have the kernel for the semi-infinite crack in the
infinite plane. The geometry of the problem is shown in Fig. I. The boundary conditions
required for the stress due to the dislocation density 0 is that for y =0 and x < 0, the stress
component u,a must vanish. Thus on the crack faces u must be purely real. The resulting
formula for UO for the case that

aCt) =o(z),

i.e. for 0 symmetrical with respect to the x-axis, is

UO(z)=~fdS'o(z') '(~)_I_.
2m " z z-z'

(32)

(33)

The integral in eqn (33) extends over the entire plane. This result is derived in Appendix A
below.

The symmetry condition stated by eqn (32) is satisfied by all the configurations with which
we are concerned in the theory.

4. DEVELOPMENT OF THE THEORY

We are now ready to proceed with the exposition of the theory. The configuration that will
be investigated is one for which a precise translational steady state can be specified, viz. a
semi-infinite crack, extending from -00 to 0 on the x-axis, in an otherwise infinite body. The
deformations and loadings are those of anti-plane strain and anti-plane stress simultaneously.
The configuration is illustrated in Fig. I. The crack tip, which is at the origin of the coordinates,
is considered to be moving to the right at a velocity v and so the crack is extending at that
velocity.

---_0 v

y
z(x,y).

x

Fig. 1. The crack geometry for the semi-infinite Mode III crack. The crack occupies the negative x-axis.
The crack tip is moving to the right with velocity v.
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The problem is characterized by two constitutive laws, as discussed above. These are:

(a) Crack kinetic law

v =v(<O, <00, 1),

<0= K2/2G.

(b) Non-elastic flow law

i =(i/u)q,

i =i*(u*)q,(ofu*).

813

(3)

(34)

(4)

(8)

In addition the body exhibits elastic strain proportional to the stress u according to Hooke's
Law.

The remote loading of the body is stated as a condition on the asymptotic stress field in the
body. This stress field qA is to be considered as the applied stress on the body. It has the form

(35)

where p and (J are polar coordinates of the field point. KA is the applied (or apparent) stress
intensity factor characteristic of the remote loading and the last factor of the r.h.s. is a column
vector symbol in which the upper entry is the x-component. If the body were solely linear
elastic. qA would be the complete stress field for the cracked body.

For the general case under consideration. the effect of prior deformation is entirely
characterized by the current dislocation density a(r). Because of the linearity of stress fields we
can represent the total stress u as the sum of qA and uo, the stress produced by a. Thus

(36)

In complex form

and. as shown above,

Then

ifa =2G.fds(z')a(z') I(E.) _1_,.
m ~ z z-z

(37)

(33)

(38)

In order for this representation to be meaningful, it is necessary only that the integral in eqn
(33) exist. We shall show below that the integral does exist for a broad range of circumstances.

The stress given by eqn (33) can be analyzed more closely as follows:
By simple algebraic manipulation. iftil can be written in the form

-til G I fd ' (') I + G ~ I fd ' (') I Iu =--2.-:r sa z ::-r; -2• v z sa Z ::-r;--,.
1/'1 v Z v Z 1/'1 V z· Z - Z

(39)

Now. the second term of the r.h.s. is non-singular. while the first term is singular. It is the
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singular term that is of interest to us. If we define

K G Jd' a(:')
pS-\/(27T) s \I:"

then the singular part of a" is of the form

which, of course, strongly resembles uA
• Then we can express the singular part of aas

. I K I
O"in~ =7Y(21T) zm'

where

(40)

(41)

(42)

(43)

This analysis of the singular behavior of iT leads to the important result that we can consider
the K that characterizes the actual crack tip field as the simple sum of the "applied" part KA

and a "plastic" part Kp• Of course, Kp is generally negative. We can then characterize all the
effect of non-elastic flow by tbe value of Kp•

Now we can state our problem precisely as follows.
(1) Given a fixed crack tip velocity v and a fixed value of KA, find the value of K p (or of K)

that corresponds to a steady state for all the field variables, or stated as an equation,

(2) Combine this result with the constitutive law given in as eqn (3) and restated as

v = g{K).

By elimination of Kp between the two equations, the desired result will be obtained as

v =I(K.... ).

(44)

(45)

(46)

We now proceed to the first sub-problem, which is simply a problem in solid mechanics.
Now it is sufficient, to specify the steady state, to prescribe that, in a reference frame

moving with a velocity v, the value of a(r) is stationary with respect to time. This is the same as
the requirement

(47)

where by a is meant the time rate of change of a at a fixed point in the fixed frame of
reference.

Then, subject to the condition of eqn (47) we wish to compute

G I a(z)
Kp =- V(21T) ds yz' (40)

The value ~f Kp seems to depend on all prior deformation history and on tbe details of a.
However, by the following trick, we can transform the integral into one that depends only on
the current deformation rate in the vicinity of tbe crack tip.
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Note that, for steady state a,

Jdszl/21i = - v'Jdsz l12Va,

=v'JdsaVzl/
2

- v'Jdrnz '12a,

815

(48)

(49)

wbere tbe last integral of the r.b.s. of eqn (49) extends over a contour at infinity bounding the
body, dr is a differential linear element of that contour and Ii is the unit, outward direction
normal, at each point of the contour. The bounding contour integral goes to zero as the
boundary tends to infinity and so

Then, from eqn (40),

=(vt2)Jds~.

(50)

(51)

(52)

(53)

The calculation to this point is exact and it emphasizes the dependence of Kp on the rate of
deformation in the vicinity of tbe crack tip. In order to obtain a solution of the problem,
however, we must now introduce an approximation. We shall approximate the stress field (1',

that generates E, by the singular part of (I' given in eqn (42) above. This approximates (I' well in
those regions where the stress is largest and where Ii is largest. This reflects the strong
dominance of the crack face boundary conditions in the vicinity of the crack tip as appears in
eqn (39).

We write therefore, as an approximation for (1',

(
.6)K I - s10 2

(I' =V(2'1T) VP 6'
cos-

2

and, if t7 denotes a unit vector with the direction of (1',

With this choice for (1',

vx E=- (Etu)[(n - l)uV x t7 - nV x (l'J,

'" • I I 8
v x (I' =rpcos2'

Vx (I' = 0,

SS Vol. 16, No. 9-D

(54)

(55)

(56)

(57)

(58)

(59)
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where n is given by
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n == (a In Eta In 0')0'.' (60)

Making the appropriate substitutions in eqn (53), we obtain

2 GIll 8 .K =--~ dszI/2 '_-cos-'(n -1)e,
p v V(21T) 2p 2

- I G I" 2 8 rae .
- - V\l(21T) _" d8 cos '2 Jo dpYp(n - l)e,

11 L"= --- GY(21T) dpYp(n -l)E.
2v 0

Now, from eqn (55),

1 (K)3 0'* (0'*)2
Yp dp =(211')312 0'* -;- d -;- ,

2 (K )3dTJ
= - (211')312 0'* 7'

where

This leads to a convenient modification of eqn (63) as

(61)

(62)

(63)

(64)

(65)

(66)

(67)

and, of course, n depends only on 71.
We have obtained our principal result without committment to a special form for ~(TJ). The

only requirement on ~ is that the integral in eqn (67) exists. For ~ as a monotonic positive
function of 71, that requirement is simply that: (a) as 71 -.0, ~ approaches zero faster than 7J3
and (b) as 71 -'00, ~ becomes unbounded more slowly than 71 3

• This requirement is easily met by
real constitutive laws for non-elastic deformation.

Note, incidentally, that if ~(TJ) is linear in 71 (Newtonian flow), then n =1and Kp =O. Thus
for a body that undergoes Newtonian non-elastic deformation, K =K.... and there is no
distinction from the linear elastic case.

In any case, the integral is dimensionless and is independent of the loading. We shall reserve
discussion of the effect of particular constitutive laws until the next section.

We shall now rewrite eqn (67) in a simpler form as

where we define

and

K3

K =-AP-
P v'

1 E*G
A & -2-::iT'11'0'

P _ r'" dTJ (n - 1~cJ!(!J)
Jo 71

(68)

(69)

(70)
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Now, from eqn (43),

and so

KJ
KA=K+AP-.. v

817

(71)

(72)

This equation represents our principal result for the steady state and it remains only to
introduce v as a function of K in order to complete the second step of our problem plan stated
above.

For the purpose of this paper we shall choose a form for v that is suggested by the work of
Lawn [l2]. We have modified Lawn's result only by replacing an exponential by a hyperbolic
sine. This insures that the crack tip velocity is zero when the Griffith-Irwin equilibrium
condition is satisfied. We write then

(73)

where Ko is the value of K corresponding to ~. K I is a quantity that depends only on
temperature and material constants and v· is a rate factor that depends on temperature through
an Arrhenius factor.

We cannot eliminate K between eqns (72) and (73) in simple closed form and so we shall
show the dependence of v upon KA numerically, in the next section, for a typical case. It is in
fact rather more illuminating to consider first the dependence of K upon K A and we shall
proceed immediately to that demonstration.

5. THE CHARACTER OF THE STEADY STATE

From eqns (72) and (73) we obtain easily the equation

(74)

This equation contains many material constants the values of which can cover a wide range,
depending on the particular material, temperature and environmental conditions and the
reliability of our representation of E and v. The importance of our current discussion is,
however, the general form of the solution and so we shall reduce the dependence of our
equation on material constants to the simplest combinations possible. We therefore introduce
reduced dimensionless measures for K as follows:

Let

Now eqn (74) becomes

where

k=KIK"

ko=KoIK"

kA=KAIKI •

(75)

(76)

(77)

(78)

(79)
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Thus we have an equation whose character depends only on the numbers Band ko. We can
now explore the character of eqn (78) for a significant range of values fo~ those constants.

In Fig. 2 we present plots of kA vs k, according to eqn (78), for the parameter values ko = 0.1
and B = 1and 5. With these two values of B we exhibit two types of curve that can result. That
for B =5 has three extremals, two minima and one maximum. The one for B = I has only one
minimum. At some value for B, slightly higher than 1, there is a minimum and a point of zero
curvature at which a maximum and a minimum coincide. The portions of each curve for which
kA decreases with increasing k are distinguished by dashed lines. Those portions of the steady
state curves represent unstable branches. That such branches are unstable regimes follows from
the circumstance that on those branches k increases as kA decreases and, since v is monotonic
in k, the velocity is increasing with decreasing "applied" k.

The more interesting curve is that for B = 5. That case exhibits two stable branches that
share overlapping ranges of kA • In Fig. 3 we show plots of log v (in arbitrary units) vs kA for
both stable branches. This is the plot that is to be compared with experimental curves of log v
vs apparent k. Note that what we have designated by kA is the k that is customary for
characterizing experimental conditions.

A prominent feature of both branches in Fig. 3 is the vertical slope of the curves at the
limits of the stable regimes. This feature follows directly from the horizontal slopes of kA vs k
at the stability limits in that plot. Note especially that it signals no special micromechanism. It is
indeed striking that this ubiquitous feature of experimental log v VS kA curves follows
unequivocally from the theory presented here. Thus the theory predicts threshhold values for
kA as well as "critical" values at which the crack appears to "runaway". The lower threshhold
value of kA , in our example of Fig. 3 is practically fifteen times the equilibrium ko on which the
plot is based. We shall not explore further numerical cases in this paper.

The region of kA between ko and the lower threshhold is also interesting. In that range of kA

non-steady state crack extension is possible. That regime of crack extension can result in
considerable crack growth under cyclic loading. This is, of course, fatigue behavior. In order to
discuss that we must consider the non-steady state behavior. We shall do that in the next
section.
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Fig. 2. Plots of "apparent" stress intensity factor k" vs actual stress intensity factor k according to eqn
(78). The equilibrium stress intensity factor knhas the value 0.1. Curves are shown for B = S with bi-modal
behavior and for B =I with a single mode. The diagonal line is the locus k" =k that would correspond to

the purely elastic case.
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rill. 3. Plots of log v vs kA for the case B=Sfrom Fig. 2. The lower branch is an observable steady state
velocity regime. The upper branch exhibits so strong a dependence of velocity on kA.that it would probably

be characterized as "run·away" growth in normal experimentation.

6. THE NON·STEADY STATE

We shall now seek an answer to the question: Given that the current values of KA and Kp

(or of KA and K) do not correspond to the steady state condition, how does this state relax to
the steady state?

Unfortunately, there is not a unique answer to the question with the conditions given. The
reason for this is that the values of KA and Kp do not uniquely characterize the non-steady
state of the cracked body. The same values of KA and Kp may be reached through more than
one loading history and so different subsequent histories of Kp may result when KA is held
constant.

It may be expected, nevertheless, that, for a limited range of loading histories, the variations
in relaxation among the several states characterized by the same KA and Kp may be slight and
that there is one principal relaxation path that accounts for most of the resultant relaxation
history. By placing suitable restrictions on the general state of crack, that are consistent with
the steady state solutions, we can develop such a principal dependence of the time rate of
change of Kp upon the current values of KA and Kp as follows:

If a is the current distribution of dislocation density, then in a coordinate frame moving in
the x-direction with the crack tip velocity v, the time rate of change of a is

da . !I
dt=a+ VOlta, (80)

where, as before, a is the time rate of change of a at a point fixed in the material frame.
Since

G f a(z)
Kp =- \1(211) ds VZ' (40)

we can define

dKp G fd _112 da
""'d't & - \1(211) SZ dt'

- - G fd -112(' + !I ]- \1(211) sz a VOlta.

(81)

(82)
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Define further the quantities

and
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aKp _ Gfd -1/2'at = - \1(211') sz cr,

aKp _ Gfd -1/2ail = - \1(211') SZ oxcr,

(83)

(84)

where aKp/at is the time rate of change of Kp due only to the current deformation rate and
aKp/aa is the change of Kp caused by unit displacement of the crack tip. We can now rewrite
eqn (82) in the suggestive form

(85)

Now, with the same singular stress approximation for u that we employed to evaluate Kp

(beginning at eqn 52), we can evaluate aKp/at. We omit the detailed calculation, which is
completely analogous to that leading to eqn (67) and report the result to be

where

a:rp
= -~ i*G(K/u*)Q,

LXd
Q== ~(n-l)q,(T/)'

o 71

(86)

(87)

We cannot evaluate aKp/aa directly. However, that quantity will be completely consistent with
the requirements at each steady state point if we assign it the value

where. as above.

i"d
P == ~ (n -1)41(71).

o 71

Now, if we write Kp for dKp/dt, we obtain the answer

. I
Kp = -2 Qf*G(K/U*)-lT(Q/P)v(u*/KfKp.

when steady state is reached, Kp = 0 and

G li* (K)3Kp =--- - P.211' V u*

(88)

(70)

(89)

(90)

The assignment made at eqn (88) is of course nothing more than evaluating aKp/aa at a steady
state point and then extending that expression beyond the steady state curve. The important
point of this is that all steady state points with the same value of Kp are mutually consistent
according to our prescription.

We note that, for any fixed choice of material parameters. Kp is negative for the region of
the (k, k,,)-plane below the steady state curve and is positive for the region above that curve.



A theory for stable crack extension rates in ductile materials 821

t

5

"

'\
\
\
\
\
\
\,
\

\ ~/
\

" /
\\ /

' ..

c..

I 2
k-

Fia. 4. A replot of the curve for B =S from Fig. 2. Loadina and response path is shown for cyclic loading
at levels of kA below Ibc steady stale lhreshhold. This fatiaue cracking behavior is described in Section 7.

The theory presented here predicts a strong effect on crack extension from cycling the value
of leA' Note in our discussion bere that crack propagation occurs with either positive or negative
loading because of the symmetrical nature of shear cracking.

Consider, then, the application to the cracked body of alternate values of leA of the same
magnitude but of alternating sign. This magnitude of leA is that which would be termed the
loading amplitude bole in a cyclic loading experiment. We consider the individual loadings to be
held constant for a time interval 'T.

The initial loading occurs when the value of ieI' is zero, corresponding to the point a on Fig.
4. During the first loading period the value of ieI' will become negative according to eqn (89)
until at the time ., it reaches a value for which Ie corresponds to the point b. During that time
the crack will extend by an amount boa given by

boa =f dtv(Ie). (91)

The value of v at each time depends only on the value of Ie that is then current and that is
determined by eqn (89).

If at that time leA is reversed and, if we continue to use tbe positive leA axis to represent the
further behavior, then relative to leA we may consider Ie, to become reversed. Thus Ie" which
had become strongly negative, now appears to be positive with the same magnitude and assists
further crack atension. We represent this state upon reversal by the point c on Fig. 4. Now,
during the next time interval 1', that system state point moves to the left until it reaches some
different end point d. In that time interval considerable further crack extension has occurred.
This process clearly can continue and ultimately reach a relatively stable amplitude for kp and a
fairly constant value for boa at each cycle.

Of course cyclic loading can also be carried out at higher levels of leA for wbich a
considerable portion of each cycle interval can even be spent at or near the appropriate steady
state point.

Clearly it is possible to describe fatigue behavior with the present theory without introduc
ing any new rules.
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8. CONC LUSIONS

We have presented a theory for crack propagation in ductile materials that is based on
simple realistic assumptions and that describes most of the observed phenomena of crack
propagation. An important feature of the theory is that it predicts crack behavior continuously
as it depends on loading history. The principal distinction from prior theory is that a crack
velocity kinetic law replaces the customary static fracture criteria.

It has been shown that, for a moving crack tip and for time dependent deformation, the
Irwin crack extension force is defined. The crack extension process is then describable by a
kinetic extension of the equilibrium condition as in the "brittle" case. The crack extension force
is deo~ndent on the stress intensity factor K that characterizes the crack tip singularity. That
value K was shown to be the sum of the apparent KA , determined from the remote loading and
a "plastic" contribution Kp• Thus

(43)

The principal result of the calculation is that, at steady state,

(68)

where v is the crack tip velocity, A depends on material modulus and flow parameters and P is
a dimensionless integral that is some moment of the constitutive function. An expression was
also derived (eqn 89) for the principal relaxation mode from a non-steady state value of K p to
the steady state.

With these results and with a reasonable expression for v as a function of K, the
dependence of steady state velocity on the value of KA was deduced. The curve of v vs KA

exhibited both threshhold and "critical" behavior due to stability limits predicted by the theory.
Below the steady state regime a time dependent behavior under cyclic loading was demon
strated, that could be identified with fatigue crack growth.
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(A.I)

APPENDIX A
The formula given in eqn (33) is derived from eqn (31) by inclusion of the crack boundary conditions in the following

way. From eqn (31) we compute the value of ay" on the left semi-infinite interval of the x-axis. After the crack is
introduced on that same interval, the stress field is left undisturbed if equal and opposite tractions are applied to the two
crack faces of magnitude equal to ay"'. The relaxation of those tractions to zero results in the introduction of a
complementary field a:. The resultant stress field of the cracked body is tben the sum of the stress field 6.· (eqn 31) for the
uncracked body and of the complementary stress a:. Our procedure is an extensionof that described by Bilbyand Eshelby[18]
for the finite crack.

From eqn (31), with ~(z) satisfying the symmetry condition of eqn (32),

u,"(X,O)=2G fdS'a(z')_I_,.
'IT x-z

The complementary field is given by the well-known Cauchy integral

a,'" =-1fo dxu,"'(x,O) I(!)_I_.
'IT -x V Z Z-x

Substitution of eqn (A.I) in eqn (A.2) yields

al' = -Qfds'a(z')-21 fO dx I(!)( ~ ')'
'IT 'IT -x V Z Z - x x - z

(A.2)

(A.3)

The integral over x is readily transformed into one over the integration variable z" and over the path C that runs from -00

to zero along the upper face of a cut that coincides with the crack, circling the oriIin in a clockwise sense, returning along
the lower face of the cut to -00 and then being completed by a circle at infinity, traversed counter-elockwise to the starting
point. The resulting integral is

'" G fd ' (') I f d" I(z") 1
Ue =2'ITi S az .2'ITi Jc Z V Z (z - z")(z" - z')' (A.4)

where we have introduced imaginary factors for convenience and the extra factor of one-balf results from the double
traverse of the negative x-axis. Upon evaluation from the residues at the poles at z and z',

. GfiG f ~(z') I(T'" =---: ds'a(z')--+--: ds'a(z') - --.
e 2'IT' Z - z' 2'ITl Z Z - z·

Finally, the stress for the cracked body is

=~fdS'a(z') I(!:.)_I
2'IT1 V z z-z"

which is the formula given above as eqn (33).

(A.S)

(A.6)

(A.7)


